
Approximate solution of a Bellman's equation 407 

BIBLIOGRAPHY 

Riasin, V. A., Model for the control of motion in a random medium. Kosmich. 

Issledovaniia, Vol. 8, Npl, 1970. 
Bratus’, A. S., On the numerical solution of a model problem of the control of 

motion in a random medium. Kosmich. Issledovaniia, Vol. 9, Np4, 1971. 
Moshkov, E. M., On the precision of optimal control of the final state. PMM 

Vol. 34, Np3, 1970. 

Kolmanovskii, V. B. and Chernous’ko, F. L., Optimal control prob- 
lems under incomplete information. Proc. Fourth Winter School on Mathemati- 

cal Programing and Related Questions, Nnl. Moscow, 1971. 
Fleming, W. H., Stochastic control for small noise intensities. SIAM J. Con- 

trol, Vol. 9, Np3, 1971. 
Solianik, A. I. and Chernous’ko, F. L., Approximate synthesis method 

for optimal control of a system subjected to random perturbations. PMM Vol. 

36, No5, 1972. 
Fleming, W, H., Some Markovian optimization problems. J. Math. Mech., 

Vol.12, Nol, 1963. 
Eidel’man, S. D,, Parabolic Systems. Moscow, “Nauka”, 1964. 
Il’in, A. M., Kalashnikov, A.S. and Oleinik, 0. A., Second-order 

linear equations of parabolic type. Uspekhi Matem. Nauk. Vol. 17, Nn3, 1962. 
Friedman, A., Partial Differential Equations of Parabolic Type. Englewood 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

IO, 
Cliffs, N. J. , Prentice-Hall, Inc., 1964. 

Translated by N. H. C, 

UDC 62-50 

ON MINIMAL OBSERVATIONS IN A GAME OF ENCOUNTER 

PMM Vol. 37, Np3, 1973, pp. 426-433 
A. A. MELIKIAN 

(Moscow) 
(Received October 12, 1972) 

We consider the differential game of the encounter of “isotropic rockets” Cl]. 
Its solution, under the condition of complete informativeness of the players, has 
been constructed in p]. We investigate the question of the minimal information 
needed by the players to realize 
game problems with incomplete 

1. Let the motion of players X and 
be specified by the relations 

x: 51’ = 22, 5s. = u, 

a saddle situation. The statement of similar 
information has been given in [S]. 

Y on a fixed time interval [O, TI, T > 0 

Xl(O) = ZlOt 22 (0) = 2s”; Y (0) = Y" (1.1) 
Here x1, x2, u, y, 2, are vectors of arbitrary like dimension . Player X has the follow- 
ing information available to him. At each instant t E [O, Tl he knows the exact value 
of the natural phase coordinate vectors zr (t), z2 (t). Player X observes the opponent’s 
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phase vector y (t) at N instants ai, i = 1, . . . . N, 0 = a, < . . . < U.V = T. 
The observation instants CLi are taken to be fixed. Thus, at the instant t e LO, i"l 
player X knows the set of quantities (t, xt (t), 22 (t), y (t’ (t))), where t’ (t) is the 
last observation instant 

t’ (f) = (Ii, r Cz [%, &,I), i=l, . . ..it'-1 (1.2) 

We assume that the player X forms a control vector at the instant t,’ using the avail- 
able information, i. e. applies a strategy in the form of the function 

ZJ It1 = u (t, 11 (t), x2 (0, y (t’(t))), 1 u ItI I< 1, t E 10, T1. 

The aim of player X is to minimize the functional 

J= IdTl -Y(T)I fi .3) 

Player Y opposes X’s intention and realizes his own (admissible) control in the form 
of an integrable time function v (t), 1 v (t) 1 4 1, t E IO, 2’1. The absolutely eon- 

tinuons functions x1. (t), q (t), y (t), x1 (0) = xX0, q (O)=Q~, y (0) = y"?, which 
satisfy the equations 

Y’ (0 = 2, (% 21’ (t) z= F2 (0, Q:,’ (t) = u (t, 51 it), x2 (t), y (t’ (f))) 

almost everywhere on 10, J’f , are said to be tne solurion of system &I), correspond- 
ing to control 21, strategy u and the initial vectors in (1.1). Those strategies which de- 
termine a unique solution of system (1.1) for given initial vectors and an admissible 

control u (t!} are taken as the admissible strategies of player X , 

Problem 1. Find the optimal minimax strategy u* of player X, i.e. the strategy 
satisfying the relation 

J* = min,sup, J [u, ZI] = sup,, J [u*, vl (1.4) 
Find the minimal value J* of functional (I. 3) guaranteed for player X . 

Here J lu, vi is the value of functional (1.3) on the solution of system (I. l), deter- 
mined by strategy u and control u. The dependence of J [tl, ~1 on the initial vectors 
is not explicitly indicated, The “min” and “sup” operations are carried out over the sets 

of admissible strategies and controls. We note that under more general constraints on the 

control vectors 1 u 1 sg p, 1 o 1 < Y, p,, Y > 0 , the game being considered can be 
reduced to the form (1.1). (1.3) by the substitution 

xr3x:IYz/p, X,-+Xs”, u-+up, Y*Yv2fprt 

Y--+ UV, t-+ tv/p, J-+JV2f& 

2, The equation of motion (1.1) can be reduced to the form 

X:2*-(T--rt)u, juj<l, Y: y’=v, jut<% 

z(0) = p = xx* -+- TxsO, y (0) = y” (2.9 

by means of the variable 5 (t) = x1 (t) -j- ( I” - t) Q (t). To solve Problem 1 using 
Eqs. (2.1) we assume that player X, by observing tne quantities (1, r (& y (t’ (t))) 
at the instant t E: [O, I!‘] , realizes a strategy in the form of the function u[t] = u (t, 
5 (t), y (r’(r))). The solution of system (2.1) and the admissible strategies are defined 
analogo~ly as in Sect. 1. In general. the class of admissible strategies is narrower than 
the class described in Sect. 1 because the dependency of the strategies on the vectors 
x1 (t), x2 (t) has been replaced by a dependency on their linear combination x (t) = 
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Xl (6 + (T - @~a (t). However, from what follows we shall see that the extremum 
(1.4) is achieved on a strategy u* from this narrow class. 

Having noted that 5 (T) = x1 (T), we rewrite functional (1.3) as 

J= Ix(T) -y(T)1 (2.2) 

We introduce the notation xk = z (ok), yk = y (ak), k = 1, . . ., N. The choice 
of a certain strategy by player X is equivalent to choosing the collection of functions 

uk (G, yk; 0, t E lak, ak+i), k = 1, . . . , N - 1, or, in other words, is equivalent 

to this that at the instant Ukplayer X , depending on the position {zk, yk} realized, 

specifies beforehand his own control on the interval [ak, ak+i) in the form of an integ- 
rable function of time. We denote the collection mentioned by {uk (xk, Yk; t)} and 
also call it a strategy. We integrate on the intervals [ak, uk+i] certain admissible con- 

trol and admissible strategy implicit in (2.1) 

~h.+~=~~+(~h+l--a,)[~--a,--l/,(“k+l-u,)lu,, IUb/<‘l 

yk+1 = i/k + (ak+l --ak> uk, 1 ‘k I< I, k=l,...,N--l (2.3) 

x1 = x0, Yl = Y” 

The vectors vk and uk = uk (5k, yk) are determined by the equalities 

aktl 

vk = (%tl - ak)-’ 
s v (t) at, 

“k 

nktl 

uk (zk, Yk) = (uktl - a,>-‘ai’ s (T - t) u, (Q, y,; t) dt 
ak 

CZk = T - Uk - ‘is (ah_+1 - a,), k=l,...,N- 1 

On the other hand, for every sequence of uk7nk = uk (zk7 Yk), 1 vk I< 1, 1 uk I < 1, 

we can find a player Y’s control and a player x’s strategy realizing in (2.1) the same 

values of vectors xk, yk, k = 1, . . ., N as in (2.3). We cite an example of such a 

control and strategy 

v(t> = Uk, uk @kv ?/k; t, = uk @A, yk) t E [ah., %+I) (24 

Instead of the differential game (2. l), (2.2) with inclomplete information we consider 

the multistage game (2.3) in which player X, applies strategies uk = Uk (zk, yk), 

k = 1, . . ., N - 1, and minimizes the functional 

J= ~~x-Yy,vl (2.5) 

If {uk* (xk7 yk)) is the optimal minimax strategy in game (2.3), (2.5), then the stra- 
tegy (2.4) corresponding to it is the optimal minimax strategy in the game (2. l), (2.2) 
i. e. in correspondence with the remark made. is a solution of Problem 1. 

To solve game (2.3) (2.5) we define Bellman’s function by the relation 

Sk (xk, yk) = minuk maxDk . . . min,,_, maxviv_,J, k = 1, . . ., N - 1. 

SN (h’, ?/n;> = 1 XN - YN [ (2.61 

Function (2.6) equals the minimum value of functional (2.5) which can be guaranteed 
on the trajectories of system (2.3) under the condition that the position {xk, yk} is 
realized at the kth stage. From (2.6) follows the recurrence relation 
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]?.h,L&i, jU,j<i, k=l>..., N--l 
, . 

with the boundary condltlon sN (2N, ylv) = , zN _ YN, 
(2.8) 

The vectors T~+~, yt+, in (2. ‘7) should be taken in the form (2.3). By starting from the 
boundary conditions (2.8) and by computing in successive stages the extremum in (2.‘7), 
we can find the unique function satisfying (2.7), (2. 8) 

sk bk, yk) = max [a,$ (akr . . ., a& Ixk - yk 1 + (T - ak) 
( 

1 - q 
>I 

@k @k, . l *, UN) = maX 
k<i<i,<N-1 

IT - ai - ‘/z(T - &+$], k==i,...,N--I 

The optimal minimax strategy obtained during the computation of the minimum in 
(2.7) is: 

u,*(s,,y,)=(y,--z,)/12,--y,I, ~zk-~k~~((ak+l--k)ak 

Uk* (5k, IJk) = (Yk - 5k) i (ak+l - ah_) ak, 1 5k - Yk I< c”k+l - ‘k) ‘k 

CXk = T - $ - l/z (ak+l - ak), k=l,...,N--l (2.9) 

Then, the strategy {u k* (x~, ‘yk; t) >, obtained substituting (2.9) into (2.4). is a solu- 
tion, generally nonunique, of Problem 1. Another solution of Problem 1 in the original 
notation has the form 

u* = (y (t’) - z (O>/ I 5 (4 - Y (0 1, z (4 # Y V’) 

u* = 0 3 2 (t) = Y (0, z (4 = xl(t) + CT - 4~ (9 (2.10) 

It is not difficult to verify that the two solutions of Problem 1 indicated realize in(2.1) 
one and the same sequence of values zk = z (uk), k = 1, . . . . N. The minimal guar- 

anteed value (1.4) of functional (1.3) (or equivalently ; functionals (2.2), (2.5) ) is 

J* = s, (x0, y”) = max I@,, (a,, . . . . &,T), 11~' - y" [ + T (1 - T / 2)] 

41(a 1, * l *, UN)= max [T - ai -1/2(T - aitl)*] (2.14) 
l,(i<N-I 

3, Above, the observation points al were taken as fixed. Let us now pose the problem 
of the optimal distribution of observation instants, i. e. such at which the minimum value 
of functional (2. ll), guaranteed for player X. is minimal. From (2.11) we see that the 
optimal distribution at* should be sought from the condition 

01* = ~i;lQ(n,, . . ., UN) (3.1) 
ai 

~=a,<u~<...su,v=T 

From the lemma stated in Sect. 5 it follows that the minimum in (3.1) exists and is 

achieved on a set of ai*, i = 1, . . . , N, such that 

T _ ci* _ “ia (T - a:+, )2 = 2hhi (T) = ml*, i = 1, ., A’ - i 

0 = a,* < u2* < . . . < UN* = T (3.2) 

Here ha (T)>O is an as yet unknown constant depending on the problem parameters 
N and T. Eliminating the ui* from equalities (3.2) we can obtain that hi (T) equals 
the only positive root of the equation 
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BN (E) = E (E (E ’ . * (E (5 + 4)” + II2 + ’ * ’ + 1)2 + 1) = T / 2, e > 0, (~-2 brackets) 

ib(h~(T))=T/2 (3.3) 

The optimal observation instants are computed by the formulas 

ci* = T - 33N-i+l (hN (T)), i-=-1,...,N (3.4) 

where px (U are ~lynomia~ of degree zEm2 (k =#= 1) 

&(E) = g (E (E . . . (E (E + 1)2 + 1)” + , . . -+- 1)” + I), k = 2, 3, . . . (k - 2 brackets) 

PI (E) = 0, P/CT1 (U = Pk2 (E) + E, k = 1, 2 ” . * (3.5) 

The relations 

Pkil(E) > Pir(97 4>0, k=i,2,... 

lim&(Q == f%(j) = ‘/,(I - y’9. -4$), !~--+oc, O,<t<l/, (3.6) 

fim Bk(E) = 30, k--+00, k>% 

are an immediate consequence of (3.5). 
Observations at the instants (3.4) guarantee player X the functional value 

J* = max 12h~( T), Ix* - y”j + T (1 - T I 2)1 (3.7) 

Let us study the asymptotic behavior of hN ( T) as N --f ,Y,. From the monotony of 

polynomials pk 6%) with respect to the index k in (3.6) follows the monotonic decrease 

~,~*~(~‘)<~,~(T), hN(T)>O, T>o, N=2,3 ,... 

and further the existence of the finite limit lim hi (T) = h (T) as N ---i\ cu. The 
functions hN (T), T > 0 and 2bN (g), E > 0, N = 2, 3, . , . . , are mutually 
inverse, therefore, from (3.6) we can obtain 

h (T) = V&” (1 - T / 21, O<T<1 (3.8) 
h (T) = I/&, T>l 

‘I&us, by choosing a sufficiently large number of observation points player X can 
guarantee a functional value arbitrarily close to 

J* = max [2h ( T), 1 x0 - go 1 + T (1 - T ! 2)l, T>O 

J* = 1 z* - go 1 + T (1 - T / 2), O<T<l (3.9) 

l/2, 1 x0 -y”/<l+ T(1 -T/2) 

jz”-y”~+T(1-TT:2), J~“-~YC~>1/2-T~~-T~2), T>1 

The value (3.9) is the minimum guaranteed value of the functional under continuous 

observation (see RI). From the initial positions for which we succeed, by choosing N v 
in obtaining in (3.7) a value of 2h.v (T) nat exceeding the right-hand expression within 

the brackets, we can guarantee the exact value (3.9) by an observation only at a finite 
number of points. This can be achieved from the position (rol 9”) 

/z”-g”l>2h(T) -T(l -T/2), T>O (3.10) 

The minimum number N (x0, y”) of observation points, sufficient to achieve result 
(3.9) from positions (3. lo), equals the minimum integer N satisfying the inequality 
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2hv(T)S~x‘- y” 1 t_ T (1 - T / 2) 

The assertions made.follow from (3.7) and from the monotonic tending of kn (T) to 
h (T). From the remaining positions 

I f - Y” 1 s 2h CT) - T (1 - T 12) (3.11) 

it is impossible to guarantee the value (3.9) by observation at a finite number of points, 
Here observations are necessary on a countable set of points, whose cons~u~tion will be 
presented below. 

We define the limit set of observation points AT c 10, Tl, Ar=(ai), ai = T - 
C, by the relations 

cio -;z 2PN_++i (hN (T)) = 2 ( . . . (T / 2 -’ h (T))‘:p. . . - h (T))‘I’P (i - 1 bracket) 

i=l, 2,. . . 

c$ =;Nti~ 2&a @iv (7)) = 2Pi+1 (h G% i = 0, 1, 2, . ; . (3.12) 

The first relation in (3.12) is obtained by using properties (3.5) of the polynomials 
/3k (g>. As we see from (3,S);the point ai ‘, i > 0, is the limit to which the i th 

optimal observation point (3.4) tends as N -+ h;]; the point ato, i < 0, is the limit 
to which the ith, counting from the last observation point as0 = T, optimal observa- 
tion point tends. Passing to the limit in equalities (3.2) as N -+ 00, we obtain the 
recurrence relations for the points Qzi0 

(3.13) 
aI* =: 0, CZ,“=T; T-Ui”-‘/,(T-_aRr)“=2h(T), i~O,f1,+.2,... 

Let US study the condensation points of set dr. At first let 0 ( T ,( 1. From (3.12) 
and (3.8) it follows that cio = T, i.e. aio = 0, i = 1, 2, . . . . Using (3.12),(3,6), 
(3.8) we find lim& = 2P(h (T)) = T, O<T<l, i-t -I- oo,i.e. theset AT 

has a single condensation point aI0 = 0. The penultimate observation point is the 

point 12-i” (3.143 
CL+” =T - cqO = T - 2fb (h (T)) = T - T (1 - T 1 2) = T2 / 2 

We consider the case T > 1. Passing to the limit in (3.13) as i -+ f co, we 

obtain lim aio = lim u,_~” = a, i -+ + cm , and the equation for a 

T- a - ‘1% (T - a)2 = ‘iz 

from which the unique value a = T - 1 is determined. Consequently, the single 

condensation point of set AT, T > 1 is the point T - 1. The second and the pen- 

ultimate observation instants aso and a-r* are determined from (3.12) 

iz20 = T - ca” =T--2T--1, a?, = T - d$ = T - ‘1% (3.15) 

It can be shown that a strategy of form (2.10). where 

iY (t) = ai”, t E lap, a%:,), i=-&tl, -&2,.*. 

defines the unique solution of system (1.1) and guarantees the value (3.9) of the func- 

tioual for any initial position and any admissible control n (2). 
‘Ihe set A cz [O, T] of instants is called a sufficient set of observation instants for 

the position (a$‘, y”> if the observations of player X on set A guarantee the results 
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of the game with continuous observation, i. e. the value (3.9) of the functional. It was 
shown above that for positions (3.10) there exists a minimal sufficiient set A = {a,*, 
aZ*, .._, a~* }, where the number N of observation points was determined as a func- 
tion of the position. For example, the set A T of (3.12) is a sufficient set for positions 
(3.11). Here the set A T is not a unique sufficient set. Among other sufficient sets with 
a countable number of observation points the set A T is distinguished by the fact that 
every two observation instants following one after the other are separeted by the maxi- 
mum distance. We remark also that in another arbitrary sufficient set of observation 

instants the points t = T - 1, T > 1, t = 0, O( T < 1 are condensation 
points. 

From the structure of set A T it follows that observations on the initial stage of the 
motion are most important for 0 < T Q 1, while the observations on the last segment 
of the motion of duration T (1 - T/,) can be completely omitted (see (3.14) ) , A 
finite number of observation points remain outside any arbitrary small interval 10, r], 

E > 0. For T > 1 the point T - 1 serves as a condensation point of set AT, there- 
fore, the observations carried out at one unit of time to the end of the motion, are most 

important. A finite number of observation points are distributed outside any arbitrarily 
small interval [T - 1. - e, T - 1 -i- 81, E > 0 . Further, observations can be 
omitted on the initial segment of motion of duration T - 1/2T - 1 and on the last 

segment of duration i/s (see (3.15) ) ‘ 
In order to clarify the reason of distinction of the instant t = 2’ - 1 from the re- 

maining instants, we consider game (1. l), (1.3) under the more general constraints : 
1 u 1 < p, { v 1 sg Y. From the remarks at the end of Sect. 1 it follows that the point 

t=T- v / f~ is then the point of condensation of set AT, T > v / p , The ratio 
V / /.& determines the length of the interval on the last segment of motion during which 

the active encounter of player X with player Y is hampered because of the inertialess 
behavior of the latter. Therefore, the observations carried out before the weakly control- 
lable segment of motion are important for player X , 

4. Let us show that by observation at no more than three instants the player Y in 
game (1.1). (1.3) can guarantee the maximum value of functional (1.3), equal to (3.9). 
This, in particular, justifies the contraction of the class of admissible strategies of player 

X, carried out in Sect. 2. In (1.1) let player Y observe the position {t, x1 (t), 52 (t), 

Y (t)) h hr at t e t ee instants 0 = a, < as & as = T and let him strive to maximize 
the functional (1.3). The admissible control of player X, the admissible strategy of 
player Y and the solution of system (1.1) we define analogously as in Sect. 1. 

Problem 4. Find the optimal maximin strategy v, of player Y, i.e. the strategy 
satisfying the relation 

J, = max, inf, J [u, VI = inf, J [u, v*l (4.1) 
Find the maximum value J, of functional (1.3) guaranteed for player Y. 

As above, Problem 4 can be reduced to an equivalent multistage game of form (2.3). 
The Bellman function for this multistage game satisfies the relation of type (2.7) in 
which the order of the minimum and maximum operations is changed. Having solved 
the similar relation, we can obtain an expression for the guaranteed maximum (4.1) 

J, = max 0, (T--J l-q), 
i 

Ia?-Y”I +T(i-$ (4.2) 
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and the strategy guaranteeing this value (in terms of the original problem) 

2)* = (z (t’) - Y (Q) / I 5 (t) - Y (0 I> 5 (0 # Y (Q 
v* = e, 1 e f = $9 3 (0 = Y (0, 2 (0 = Xl (t> + (T - Q% (4 

The instant t’ (t) has been defined in (1.2) with N = 3. We see that having set 

a2 = a, = 0 for 0 < T < 1 and a2 = T - 1 for T > 1 in (4.21, we obtain 

the very same value (3.9) for .I, . Thus, in order that a saddle situation would take 

place in game (1. l), (1.3), it is necessary and sufficient for player Y to make observa- 
tions at two (0 < T < 1) or at three (T > 1) points ; it is sufficient for player X 
to make observations at a finite or countable set of points, constructed in Sect. 3. In 
those cases when it suffices for player X to observe at a finite number of points, the 
question of the minimum information needed for realizing the saddle situation, can be 
discussed. 

6. Lemma. Let a function g (x, y) be continuous in the closed square a & 5, 
y < b and differentiable in the open square a < x, y < 6, and let 

dg I 8x < 0, dg I dy > 0, a<x, Y<b (5.1) 

Let 2 = (21, . . ., z,,) be an n-dimensional vector, n > 2 and let z e G signify 

that: zl=a,z,=b, a<zi<b, i--2 ,..., n-4. ~en‘theminimum 

h I tnn; a(z), 4, (2) =; rnxc g (% zi+l) 
l<i%?%-1 

is achieved at a single point a* E G such that 

h = g (zi*, zT+1), izl,..., n--l, a = zl* < z2* <a . . <z,* = b (5.2) 

Let us sketch the proof. The desired minimum is achieved since the set G is closed 

and the function @ (z) is continuous on it. If we assume that equality (5.2) is not ful- 

filled, then, by using (5.1). we can construct a variation 62 of vector z*, ,z* + 6z~G, 
such that @ (s* + 62) ( Q, (z*). Finally, the uniqueness and the strict monotonic 
growth of the coordinate vector z* can be proved by taking equalities (5.2) as the equa- 

tions for determining the successive coordinate $+, when the preceding one zi* is 

known. 
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